Entsorgung von Abfällen mit vernachlässigbarer Radioaktivität aus dem Abbau kerntechnischer Anlagen

- Das 10 Mikrosievertkonzept -

Dr. Jürgen Müller Abteilung für Reaktorsicherheit und Strahlenschutz

Schleswig-Holstein Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume

Freigabe

Schleswig-Holstein

Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume

Uneingeschränkte Freigabe

Keine Einschränkung nach Freigabe aus der Strahlenschutzverordnung

Verwertung nach Abfallrecht Eingeschränkte Freigabe

Freigabe zur Beseitigung

Deponierung

Metallschrott zur Rezyklierung

Verbrennung

"10-Mikrosievertkonzept" Was ist das?

Welche Überlegung steckt dahinter?

Wann sind Stoffe, die der Strahlenschutzüberwachung unterliegen, in dem Sinne "unbedenklich", dass ihr Eintritt in den Wirtschaftskreislauf verantwortbar ist?

Was ist die Lösung?

Einen Wert für diese "Unbedenklichkeit" zu ermitteln, der dem wissenschaftlichen Kenntnisstand über die Wirkung der Radioaktivität möglichst umfassend Rechnung trägt. Darüber hinaus auch die gesellschaftliche Diskussion nicht außer Betracht lässt.

Wie wurde die Lösung umgesetzt?

Durch Festlegung eines Wertes von 10 Mikrosievert als <u>unbedenklich</u> und <u>verantwortbar</u>, denn dieser Wert liegt weit unterhalb der Strahlenpegel, die durch natürliche radioaktive Strahlung im Alltag auftreten können.

Freigabe

Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume

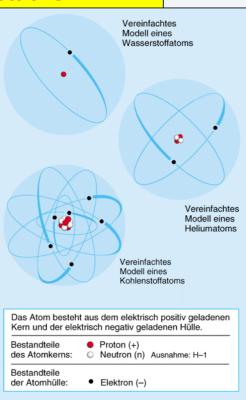
Uneingeschränkte Freigabe

Die Aktivität liegt etwa zwischen 10 und 100 Bq/kg

Eingeschränkte Freigabe

Die Aktivität liegt etwa bei 100 Bq/kg oder leicht darüber

ländliche Räume

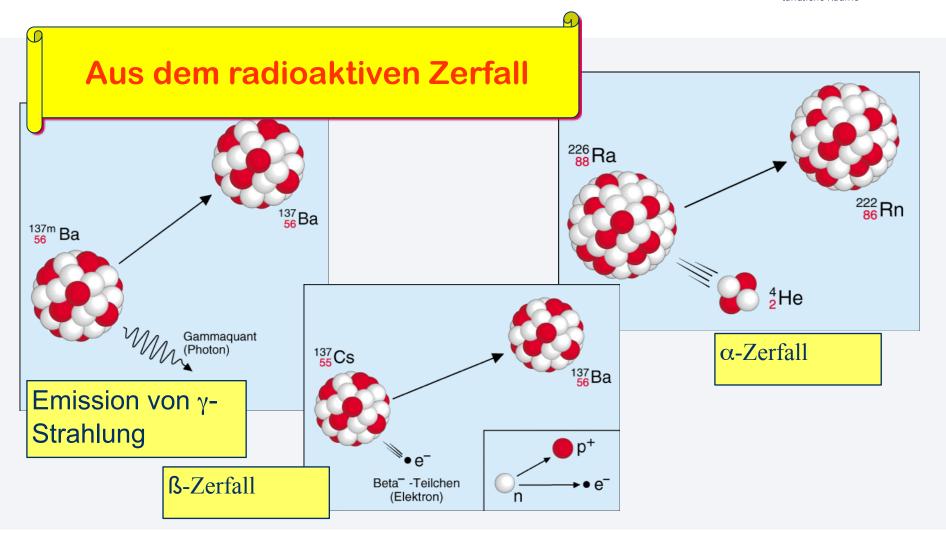

Radioaktivität (von lat. radius, Strahl; Strahlungsaktivität), radioaktiver Zerfall oder Kernzerfall ist die Eigenschaft instabiler

Atomkerne, sich spontan unter Energieabgabe umzuwandeln.

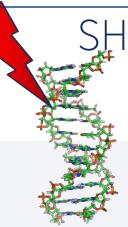
Die freiwerdende Energie wird als ionisierende Strahlung, nämlich energiereiche Teilchen und/oder Gammastrahlung,

abgegeben.

Das Becquerel gibt die Anzahl der Atome an, die pro Sekunde zerfallen: **1 Bq = 1 s**⁻¹



Woher kommt die Strahlungsenergie?



Schleswig-Holstein

Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume

Biologische Untersuchungen haben gezeigt, dass die Bestimmung der Energiedosis nicht ausreicht, wenn die medizinischen Konsequenzen der Strahlenabsorption im menschlichen Körper beachtet werden müssen

Schleswig-Holstein
Ministerium für Energiewende,
Landwirtschaft, Umwelt und
ländliche Räume

Jetzt ist

das <u>biologische</u> Maß für die absorbierte Energie - unter Berücksichtigung der unterschiedlichen biologischen Wirksamkeit verschiedener Strahlenarten – die ...

> Äquivalentdosis (gemessen in Sievert [Sv])


> > Rolf Maximilian Sievert (schwedischen Mediziner und Physiker)

Strahlenwirkung auf 3 Ebenen

Schleswig-Holstein

Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume

Ein durchschnittlicher Mensch in Deutschland enthält eine

Aktivität von ...

Nuklid

Aktivität in Bq

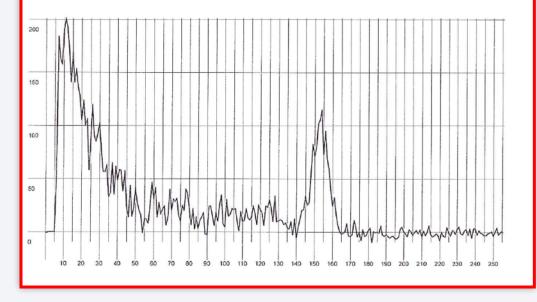
H-3	25
11-3	
Be-7	25
C-14	3.800
K-40	4.200
Rb-87	650
U-238, Th-234, Pa-234m, U-234	4
Th-230	0,4
Ra-226	1
kurzlebige Rn-222-Zerfallsprodukte	15
Pb-210, Bi-210, Po-210	60
Th-232	0,1
Ra-228, Ac-228, Th-228, Ra-224	1,5
kurzlebige Rn-220-Zerfallsprodukte	30

Diese Aktivität ergibt eine Strahlendosis von $300~\mu Sv~pro~Jahr$

Body-Counter-Messung

Name: Müller Jürgen Meßdatum: 02.06.2016

Geb.Datum: 29.01.1953


Gewicht: 76,9 kg Meßzeit: 300s

Ergebnisse:

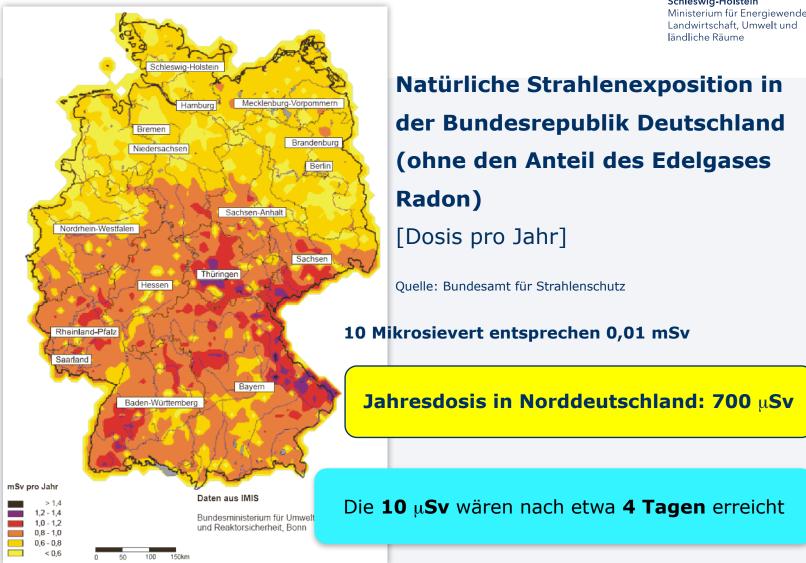
Nuklid Gesamtaktivität spezifische Aktivität

Cs-137: 0 Bq 0,00 Bq/kg K-40: 4087 Bq 53,78 Bq/kg

Körper-Kalium-Gehalt: 134 g

Freigabe

Uneingeschränkte Freigabe


Die Aktivität liegt etwa zwischen 10 und 100 Bq/kg

Eingeschränkte Freigabe

Die Aktivität liegt etwa bei 100 Bq/kg oder leicht darüber

Aufregung um strahlende Pflastersteine

Die Stadt Northeim hat am Mittwoch die Zufahrt zu einem Supermarkt wegen radioaktiver Strahlung zeitweise abgesperrt. Das Göttinger Gewerbeaufsichtsamt wurde eingeschaltet und ein Uni-Institut mit Messungen beauftragt.

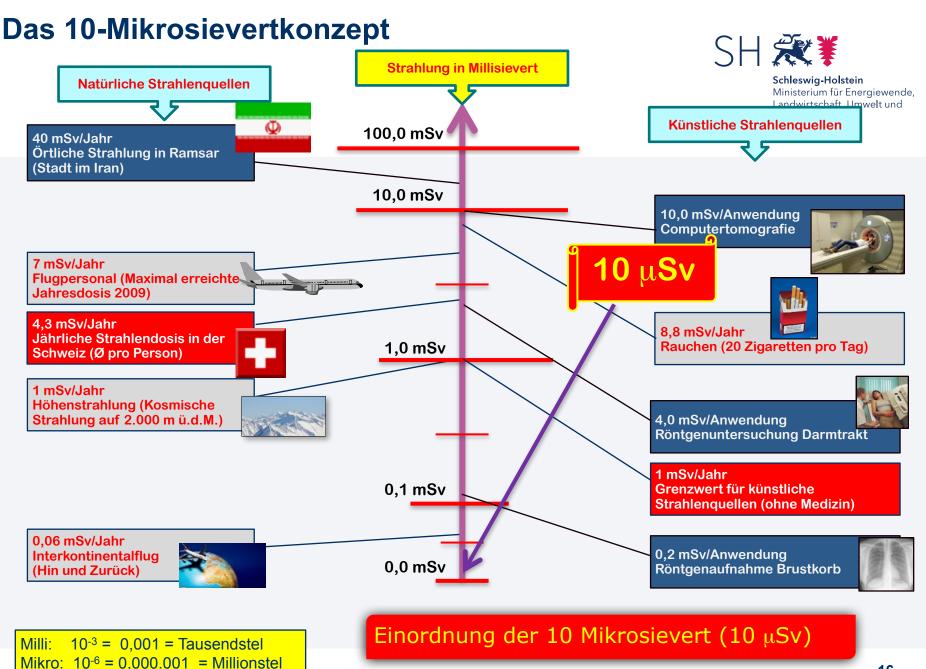
(Artikel veröffentlicht: Freitag, 15.07.2011 10:37 Uhr)

Northeim. Ursache der erhöhten Werte ist die natürliche Strahlung der Pflastersteine, die dort schon seit Jahrzehnten liegen – vermutlich hergestellt aus sogenannter Mansfelder Kupferschlacke. Da keine Gefahr bestehe, sei die Sperrung am Abend wieder aufgehoben worden, sagte Northeims Bürgermeister Harald Kühle (SPD). Ähnlich belastetes Baumaterial gebe es mit Sicherheit an vielen Stellen. Steine aus Mansfelder Kupferschlacke aus der ehemaligen DDR seien in den 70er Jahren auch häufig im Westen verwandt worden. Die erhöhten Werte waren einem Northeimer Mitarbeiter des Bundesamtes für Güterverkehr aufgefallen. Sein eingeschalteter Geigerzähler, mit dem sonst Lastwagen untersucht werden, schlug auf der Fahrt zum Einkaufen in der Graf-Otto-Straße aus. Er informierte die Stadtverwaltung, die Gewerbeaufsicht und Bundesstrahlenamt einschaltete. Ein Gutachter des Göttinger Uni-Labors für Radioisotope stellte Vergleichsmessungen an. Auf dem Pflaster in der Zufahrt seien 0,59 Mikrosievert pro Stunde gemessen worden, sagte Ordnungsamtsleiter Michael Kaiser. Über einem Rasen wurden 0,18 und über einem anderen Pflaster 0,43 Mikrosievert pro Stunde festgestellt. Eine Strahlenbelastung von einem Millisievert im Jahr wird als unbedenklich angesehen, soll aber möglichst nicht überschritten werden. Die Belastung aus der Northeimer Pflaster ist rund das Dreifache – allerdings nur, wenn sich jemand das ganze Jahr dort Tag und Nacht aufhält.

Bei Daueraufenthalt ergibt sich eine Strahlendosis von **5.200** μ **Sv** pro Jahr Die **10** μ **Sv** wären bei einer Aufenthaltsdauer von **17 Stunden** erreicht

		Spezif	ische Akti	vität in E	3q/kg						leswig-Hols	
Material	K-40 Ra-22		26 Th-232					Lan	dwirtschaft,	Energiewend Umwelt und		
	Bereich	Mittel- wert	Bereich	Mittel- wert	Bereich	Mittel- wert				län	dliche Räum	e
Granit	600-4000	1000	30-500	100	17-311	120						
Basalt	130-380	270	6-36	26	9-37	TABLE	4 Assumed con	centrations	of radionucli	des in ash and	coal	
									concentration (Bo	q kg ⁻¹)		
Kalkstein, Marmor	<40-240	90	4-41	24	2-20			²³⁸ U series	²³⁶ U series	- Alldilid	A II di	_
, , , , , , , , , , , , , , , , , , , ,						Material		²³⁸ U to ²²⁶ Ra	²¹⁰ Pb and ²¹⁰ Po	All radionuclides in ²³⁵ U series*	All radionuclide in ²³² Th series	40K
Kies, Sand	3-1200	380	1-39	15	1-64	Ash to atr	mosphere	100	200	5	50	
						Ash to lar		100	100	5	50	
Natürlicher Gips	6-380	70	2-70	10	1-100	Ash used Coal	in building materials	100 15	200 15	5 0.75	50 7.5	900
Tuff, Bims	500-2000	1000	<20-200	100	30-300		centrations of the radio (0.72% by mass, 4.5%		e ²³⁵ U series are ba	ased on the natural	isotopic content (of ²³⁵ U in
Ton, Lehm	300-2000	1000	<20-90	40	18-200	60						
Ziegel, Klinker	100-2000	700	10-200	50	12-200	52 TABL	E 8 Peak annua	ıl individua	I doses from I		ials	
Beton	50-1300	450	7-92	30	4-71	1						
50.011	30 1000	400	7 02		771		onent		Manufacturer		· · · · · · · · · · · · · · · · · · ·	ident
						Ash	na materiale containin	a oob	13.6	5.1	580	·
Kalksandstein	40-800	200	6-80	15	1-60		ng materials containin ng materials not conta	_	34.7 30.2	13.2 11.5	146 126	
							s dose from use of as	-	4.5	1.7	20	
Leichtebeton	700-1600	1100	<20-90	30	<20-80	3υ						

Gehalt natürlicher radioaktiver Stoffe in Baumaterialien in Deutschland Quelle: VOG04



Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung - TrinkwV 2001)

Parameterwerte für Radon-222, Tritium und Richtdosis

Laufende Nummer	Parameter	Parameterwert	Einheit	
1	Radon-222	100	Bq/I	
2	Tritium	100	Bq/I	
3	Richtdosis	100	Mikrosievert pro Jahr	

Anlage 3a (zu den §§ 7a, 9 und 14a) Anforderungen an Trinkwasser in Bezug auf radioaktive Stoffe

In Diskussionen tauchen immer wieder zwei Fragen auf:

1. Die Risikozahlen für die Abschätzung des Strahlenkrebsrisikos basieren auf den Abschätzungen, die vor dem Jahr 1990 gültig waren.

"Inzwischen stellt man fest, dass viele dieser Grundlagen, die zu den heute geltenden Grenzwerten geführt haben, im Grunde nicht mehr haltbar sind. Der Risikofaktor für das Krebsrisiko, die Strahlengefährlichkeit wird in der Fachwelt deutlich höher angesehen, auch in Studien der japanischen Kommission, die nach Hiroshima und Nagasaki das Strahlenkrebsrisiko bewertet." (Dr. Neumann, Erörterungsverfahren KKB)

2. Als Referenzperson für die Quantifizierung des Strahlenkrebsrisikos wird ein durchschnittlicher erwachsener Mann zugrunde gelegt.

1. Die Risikozahlen für die Abschätzung des Strahlenkrebsrisikos basieren auf den Abschätzungen, die vor dem Jahr 1990 gültig waren.

Unsere heutigen Risikozahlen (Krebsmortalität) leiten sich aus Hiroshima/Nagasaki ab

Entwicklung der Risikozahlen*):

ICRP 27 (1977): $125 \text{ pro } 10^4 \text{ PSv} = 1,25\% \text{ pro Sv}$

ICRP 60 (1990): $500 \text{ pro } 10^4 \text{ PSv} = 5\% \text{ pro Sv}$

ICRP 103 (2007): $500 \text{ pro } 10^4 \text{ PSv} = 5\% \text{ pro Sv}$

Alternative maximal: 7.000 pro 104 PSv =70% pro Sv

*) ICRP (International Commission on Radiological Protection - Internationale Strahlenschutzkommission)
Die Veröffentlichungen und Risikoabschätzungen entsprechen den Auswertungen der epidemiologischen Daten
aus Hiroshima und Nagasaki 20 Jahre. 40 Jahre und 60 Jahre nach den Atombombenabwürfen.

ICRP 103 (2007): 500 pro 10⁴ PSv = 5% pro Sv Vorsichtige Interpretation: 1.000 pro 10⁴ PSv = 10% pro Sv

Das entspricht bei einer Dosis von 10 Mikrosievert einem zusätzlichen Strahlenkrebsrisiko von 10⁻⁶ (Risiko von 1 : 1.000.000)

Die Aufnahme einer Dosis von 10 μ Sv bedeutet demnach eine Risikoerhöhung von 25% auf 25,0001%

2. Als Referenzperson für die Quantifizierung des Strahlenkrebsrisikos wird ein durchschnittlicher erwachsener Mann zugrunde gelegt.

Anlage VII der Strahlenschutzverordnung (zu §§ 29 und 47) Annahmen bei der Ermittlung der Strahlenexposition

Teil B: Lebensgewohnheiten

Tabelle 1										
mittlere Verzehrsraten der Referenzperson in kg/a										
1 2 3 4 5 6 7										
Altersgruppe	<= 1 Jahr	> 1 - <= 2 Jahre	> 2 - <= 7 Jahre	> 7 - <= 12 Jahre	> 12 - <= 17 Jahre	> 17 Jahre				
Lebensmittel										
Trinkwasser	55 3)	100	100	150	200	350	2			
Muttermilch, Milchfertigprodu mit Trinkwasser	ikte 200 3, 4)	_	_	_	_	-	1,6			
Milch, Milchprodukte	45	160	160	170	170	130	3			
Fisch 5)	0,5	3	3	4,5	5	7,5	5			
Fleisch, Wurst, Eier	5	13	50	65	80	90	2			

- Mengenangabe in (l/a)
 - Zur jährlichen Trinkwassermenge des Säuglings von 55 l/a kommen, 160 l/a, wenn angenommen wird, dass der Säugling nicht gestillt wird, sondern nur Milchfertigprodukte erhält, die überregional erzeugt werden und als nicht kontaminiert anzusetzen sind. Dabei wird angenommen, dass 0,2 kg Konzentrat (entspricht 1 l Milch) in 0,8 l Wasser aufgelöst werden.
- 4) Je nach Nuklidzusammensetzung ist die ungünstigste Ernährungsvariante zugrunde zu legen.
- Der Anteil von Süßwasserfisch am Gesamtfischverzehr beträgt im Mittel ca. 17% und ist den regionalen Besonderheiten anzupassen.

Anlage VII der Strahlenschutzverordnung (zu §§ 29 und 47) Annahmen bei der Ermittlung der Strahlenexposition

Alter	sgruppe	<= 1	> 1 -	> 2 -	> 7 -	> 12 -	> 17	
		Jahr	<= 2	<= 7	<= 12	<= 17	Jahre	
			Jahre	Jahre	Jahre	Jahre		
Leben	smittel							
	mittlere	Verzehrs	sraten de	er Refere	nzperso	n in kg/a		
Getre	ide,							
Getre	ideprodukt	e 12	30	80	95	110	110	2
	imisches							
Frisch								
Säfte	rodukte,	25	45	65	65	60	35	3
		23	73	05	05	- 00	- 55	
Kartof								
Wurze Säfte	elgemüse,	30	40	45	55	55	55	3
			40		55			
Blattg	emüse	3	6	7	9	11	13	3
Gemü								
Gemü	seprodukt							_
		5	17	30	35	35	40	3

Tabelle 2										
Altersgruppe	<= 1 Jahr	> 1 - <= 2 Jahre		> 7 - <= 12 Jahre	> 12 - <= 17 Jahre	> 17 Jahre				
Atemrate in cbm/Jahr	1 100	1 900	3 200	5 640	7 300	8 100				

Vielen Dank für Ihre Aufmerksamkeit

Schleswig-Holstein Ministerium für Energiewende, Landwirtschaft, Umwelt und

ländliche Räume